On the Genericity of the Multiplicity Results for Forced Oscillations on Compact Manifolds

نویسندگان

  • MARTA LEWICKA
  • MARCO SPADINI
چکیده

In [3], some multiplicity results for the forced oscillations of a mass point constrained on a sphere have been obtained. In particular, it was proved that a small periodic perturbation of a gravitation-like tangent vector field induces at least two forced oscillations. Such results depend strictly on the strong geometric properties of the sphere and cannot be (easily) extended to the general setting of a second order ODE on an arbitrary compact manifold. However, we will show that such multiplicity results are, in some sense, “generic”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on the Genericity of Multiplicity Results for Forced Oscillations on Manifolds

(2) ẍπ = h(x, ẋ) + f(t, x, ẋ), where h : TM −→ R is C and tangent to M , and the perturbing function f : R × TM −→ R is T -periodic in t (with T > 0 a fixed number), tangent to M and satisfies the usual Carathéodory and admissibility conditions. In particular, we shall prove that when M is compact, then the set of h such that (2) admits at least |χ(M)| geometrically independent T -periodic solu...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

Genericity of Nondegenerate Critical Points and Morse Geodesic Functionals

We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Based on an idea of B. White [24], we prove an abstract genericity result that employs the infinite dimensional Sard–Smale theorem. Applications are given by proving the genericity of metric...

متن کامل

Existence and Genericity Problems for Dynamical Systems with Nonzero Lyapunov Exponents

This is a survey-type article whose goal is to review some recent results on existence of hyperbolic dynamical systems with discrete time on compact smooth manifolds and on coexistence of hyperbolic and non-hyperbolic behavior. It also discusses two approaches to the study of genericity of systems with nonzero Lyapunov exponents. MSC2000 numbers: 58F09 DOI: 10.1134/S1560354707050024

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006